Modular NanoSat Launcher Design for Lowest Mission Cost, Phase I

Completed Technology Project (2009 - 2009)

Project Introduction

As minimum cost will be required for a dedicated NanoSat Launch Vehicle, a series and parallel staged, highly modular vehicle architecture is proposed for design exploration. The principal advantage of a modular architecture on this size vehicle is a single propulsion development at a relatively small scale which drastically shortens development timelines and cost. A candidate launch vehicle could use 7 modules for the first stage, 4 for the second, 2 for the third, and 1 for the fourth. Whittinghill Aerospace proposes to investigate many modular designs for 3, 4, and 5 stage vehicles of different (solid, liquid, and hybrid) propellant types. Structural, aerodynamic, propulsion, and control configurations of vehicles will be optimized and "flown" with a trajectory tool to evaluate performance. After trades and analyses are completed and designs ranked, the resulting optimum module size will then be built and tested at an anticipated 1 to 3Klb thrust level. At the conclusion of Phase 1, the technology will be ready for flight development and will be at a TRL level of 5. At the end of Phase 2, a full-scale, 2-stage sub-orbital modular vehicle will have flown.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead	NASA	Moffett Field,
	Organization	Center	California
Whittinghill	Supporting	Industry	Camarillo,
Aerospace, LLC	Organization		California

Modular NanoSat Launcher Design for Lowest Mission Cost, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	
Project Management	2
Technology Areas	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Modular NanoSat Launcher Design for Lowest Mission Cost, Phase I

Completed Technology Project (2009 - 2009)

	Primary	U.S.	Work	Locations
--	---------	------	------	-----------

California

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - □ TX14.1 Cryogenic Systems
 □ TX14.1.2 Launch
 Vehicle Propellant